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EXECUTIVE SUMMARY

Introduction

Obtaining timely information across the state roadway network

is important for monitoring the condition of the roads and the

operating characteristics of traffic. One of the most significant

challenges in winter roadway maintenance is identifying emerging

or deteriorating conditions before significant crashes occur. For

instance, almost all modern vehicles have accelerometers, anti-

lock brake (ABS), and traction control systems. This data can be

read from the Controller Area Network (CAN) of the vehicle and,

combined with GPS coordinates and cellular connectivity, can

provide valuable on-the-ground sampling of vehicle dynamics at

the onset of a storm. We are rapidly entering an era where this

vehicle data can provide an agency with opportunities to more

effectively manage their systems than traditional procedures that

rely on fixed infrastructure sensors and telephone reports. This

data could also reduce the density of roadway weather informa-

tion systems (RWIS), similar to how probe vehicle data has

reduced the need for micro loop or side fire sensors for collecting

traffic speeds.

Methods

Over the course of the project, the research team engaged a

number of industry partners to collaborate, consult experts, test

equipment, and share findings of the research with stakeholders.

Vehicles from three different manufacturers were used for testing

CAN data elements in nine categories. A system for receiving,

transmitting, and processing the CAN data was piloted using a

vehicle interface (VI) with an embedded computer, cellular

networks, and back-office data system at Purdue University.

A series of dashboards for transforming and displaying the data

were developed as part of the user interface deliverables.

Findings

The findings of this research were as follows:

1. The team successfully piloted an integrated CAN Bus road

monitoring system to identify roadway hazards in real-time

during winter events. This enables data-driven decision-

making for practitioners.

2. The team successfully identified, tested, and integrated CAN

Bus data elements from nine categories (speed, GPS, braking

systems, drivetrain, accelerometer, steering, climate, lighting,

and emergency systems) into existing dashboard interfaces

for identifying winter road and hazardous conditions.

3. The team found braking and wheel counter data to be the

most useful for early indication of winter conditions.

4. The volume and velocity of the CAN Bus data will be the

most challenging to implement over a large fleet as many

signals are generated at millisecond fidelity. To help with the

scaling process, only relevant signals from the vehicle should

be transmitted to the agency using efficient protocols to a

scaled-out, high-performance back-office system, or cloud

data center.

5. A few emerging off-the-shelf products from automotive

manufacturers and equipment suppliers are starting to

provide roadway metrics from CAN Bus data. Continued

engagement and collaboration with these industry partners

will enable INDOT to make use of and transition to scalable,

commercially-supported, state-of-the-art platforms.

Implementation

Near- and medium-term recommendations are as follows, with

action items for each term:

1. Near-term (6–18 months)

a. Develop relationships with CV data providers to

integrate hard braking events into Traffic Management

Center (TMC) operations.

b. Develop relationships with CV data providers to

integrate loss of friction data (ABS or traction control)

into TMC operations and coordinate with winter weather

maintenance colleagues.

c. Develop relationships with CV data providers to identify

locations of pavement distress or work zone irregularities

using vehicle pitch, roll, and steering.

2. Medium-term (18 months or longer)

a. Evaluate the feasibility of capturing weather-related data

such as windshield wipers, defroster settings, and

temperature readings to enhance TMC and winter

weather management activities.

b. Develop plans to integrate this data into business

processes used by central office, districts, sub-districts,

and units. The winter weather data is particularly

valuable to sub-districts and units.



CONTENTS

1. PROJECT OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Dissemination of Research Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. CAN BUS DATA ELEMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Braking Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Drivetrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Steering Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.7 Climate and Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.8 Lighting Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.9 Emergency Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. CAN BUS DATA INTEGRATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Transfer and Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4. WEATHER DATA INTEGRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 North American Land Data Assimilation System (NLDAS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Doppler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 High Resolution Rapid Refresh (HRRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Mobile Road Weather Information System (MARWIS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5. ENGAGEMENT WITH STAKEHOLDERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1 INDOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Industry Partners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6. WEB PORTALS FOR DATA INTEGRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1 Speed Heatmap for Automatic Vehicle Location and Mobile Road Weather Information Sensor . . . 17
6.2 Winter Weather Enhanced Probe Data Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3 High-Fidelity Weather Heatmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.4 Integrated Fuel Consumption, Brake Pressure, and Traffic Signal Prediction Application . . . . . . . . . 20
6.5 District-Level Vehicle Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7. DEPLOYMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.1 Single Vehicle Pilot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.2 At Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.3 Integration into District and Sub-District Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8. SUMMARY AND RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

APPENDICES
Appendix A. Leveraging Connected Vehicles to Provide Enhanced Roadway Condition Information . . . 29
Appendix B. Using Probe Data Analytics for Assessing Freeway Speed Reductions During Rain

Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Appendix C. Evaluation of the High-Resolution Rapid Refresh Model for Forecasting Roadway

Surface Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Appendix D. Dashboards for Real-Time Monitoring of Winter Operations Activities and After-Action

Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Appendix E. Using Crowdsourced Vehicle Braking Data to Identify Roadway Hazards. . . . . . . . . . . . . 29



LIST OF TABLES

Table Page

Table 2.1 CAN Bus data element implementation timeline 3

Table 7.1 Pilot testing dates 23

Table 7.2 Summary of winter impacts by storm 26

Table 7.3 Engagements with INDOT districts 26



LIST OF FIGURES

Figure Page

Figure 1.1 Evolution of probe and connected vehicle data 1

Figure 1.2 Heatmap of traffic speeds with friction overlaid on I-465, January 12, 2019 2

Figure 2.1 Example of crowdsourced GPS coordinates exiting an intersection over 1 month at US 231 and SR 25 in Lafayette, IN 3

Figure 2.2 Icy area in advance of a stop sign that triggers ABS intervention 4

Figure 2.3 Brake pedal intensity 4

Figure 2.4 Changes in brake pressure intensity during snowfall event 5

Figure 2.5 Measured wheel counter (ticks) during a slippery condition 5

Figure 2.6 Lateral acceleration 6

Figure 2.7 Dashboard for pothole detection using lateral acceleration 6

Figure 2.8 Plot of hard crashes/mile vs. hard braking events/mile for July and August 2019 construction zones 7

Figure 2.9 Dashboard view of pitch and roll angle on a Ford F-150 7

Figure 2.10 Steering angle testing on 2014 Suburban 8

Figure 2.11 Windshield wipers 8

Figure 2.12 Windshield defroster button activation 9

Figure 12.13 ADAS systems and challenges 9

Figure 3.1 OBD-II pinout 10

Figure 3.2 OBD-II connector interfaces 11

Figure 3.3 Standard CAN message 11

Figure 3.4 Data signals 12

Figure 3.5 Reverse-engineering CAN bus signals 12

Figure 3.6 High-level network diagram of possible data transfers 13

Figure 4.1 NLDAS data for Crawfordsville, December 15–16, 2019 14

Figure 4.2 Doppler data during severe storm, April 8, 2020 15

Figure 4.3 Surface wind gust potential using HRRR, April 17, 2020 15

Figure 5.1 CAN workshop with Intrepid CS, November 2017 16

Figure 5.2 Enhanced probe data collection with VW-ERL 16

Figure 5.3 Collaboration with Nira Dynamics AB partners, September 17–21, 2018 17

Figure 5.4 Hard braking events over 1-week period 17

Figure 6.1 Heatmap of traffic speeds with friction overlaid on I-465, January 12, 2019 18

Figure 6.2 Heatmap of traffic speeds with integrated camera images, December 16, 2019 18

Figure 6.3 Dashboard displaying traction control, ABS, hazard lights, and windshield events during an ice storm on I-70 in Missouri 19

Figure 6.4 Hazardous conditions dashboard with color representing slip ratio of roadway segments 19

Figure 6.5 High-fidelity weather heatmap showing wind gusts alongside traffic speeds, March 3, 2020 20

Figure 6.6 Integrated fuel consumption estimation and brake pressure dashboard 20

Figure 6.7 District-level vehicle utilization dashboard 21

Figure 6.8 Daily utilization dashboard for a single maintenance vehicle 21

Figure 7.1 Raspberry Pi device for receiving CAN messages from Wi-Fi 22

Figure 7.2 System architecture for pilot system 22

Figure 7.3 Verizon NetworkFleet system 24



Figure 7.4 Nira dynamics AB road surface information (RSI) tool 25

Figure 7.5 After-action report summary for Greenfield and Crawfordsville districts, December 15, 2019 25

Figure 7.6 Select workshops conducted with INDOT districts and subdistricts 26



LIST OF ACRONYMS

ABS Anti-Lock Braking System

ADAS Advanced Driver Assistance Systems

AVL Automatic Vehicle Location

CAN Controller Area Network

DBC Database CAN

DTC Diagnostic Trouble Codes

FHWA Federal Highway Administration

FTP File Transfer Protocol

GPS Global Positioning System

GRIB GRidded Information in Binary

HRRR High-Resolution Rapid Refresh

HTTP Hyper Text Transport Protocol

IQR Inter-Quartile Range

JSON JavaScript Object Notation

MARWIS Mobile Road Weather Information Sensor

MQTT Message Queuing Telemetry Transport

MRMS Multi-Radar/Multi-Sensor

NASA National Aeronautics and Space Administration

NLDAS North American Land Data Assimilation System

NOAA National Oceanic and Atmospheric Administration

NSSL National Severe Storms Laboratory

OBD On-Board Diagnostics

SQL Structured Query Language

TPMS Tire Pressure Monitoring System

USB Universal Serial Bus

USDOT United States Department of Transportation

VI Vehicle Interface

Wi-Fi Wireless Fidelity



1. PROJECT OVERVIEW

1.1 Introduction

Over the course of the project, the research team
engaged a number of industry partners to collaborate,
consult experts, test equipment, and share findings of
the research with stakeholders. Vehicles from three
different manufacturers were used for testing CAN data
elements in nine categories. A system for receiving,
transmitting, and processing the CAN data was piloted
using a vehicle interface (VI) with an embedded com-
puter, cellular networks, and back-office data system at
Purdue University. A series of dashboards for trans-
forming and displaying the data were developed as part
of the user interface deliverables.

As an example, Figure 1.1 illustrates how speed and
hard braking CAN data can enhance roadway mon-
itoring. Vehicle data is used to populate the charts,
colorized by the speed of vehicles. In this example, a
6-mile queue developed in a 3-hour period following a
crash. This queue can be seen using aggregated segment-
level speed data in Figure 1.1a. Callout i shows the
location of the crash at the beginning of the queue where
the initial drop in aggregated speed is detected. Figure
1.1b shows the event in more detail using vehicle trajec-
tories. Vehicles between 17:00 and 17:30 were at a stand-
still with one of the vehicles keying off (callout ii). CAN
Bus data goes one step further by using accelerometer
data from vehicles to track the locations of hard braking,
color-coded by how quickly a vehicle was travelling when
the brakes were applied, in Figure 1.1c. Callout iii shows
an initial pair of hard braking events detected about
15-minutes earlier than the earliest speed drop. Hard
braking events persisted an hour into the event (callout
iv), extending up to six miles from the crash.

Although only hard braking is now commercially
available from Connected Vehicles (CV), this report

illustrates how data from traction control and ABS
systems could be used in a similar manner to identify
onset of winter weather using both a connected Audi
and mobile roadway weather monitoring equipment
mounted on INDOT trucks.

Figure 1.2 illustrates a ‘‘heatmap’’ much like Figure 1.1a
during a winter storm on I-465, overlaid with trajec-
tories of snow plows instrumented with a MARWIS
sensor that reports friction values. The tracks show
good pavement conditions before the storm (callout i),
slippery conditions during two phases of the storm
(callout ii and iii), and recovery (callout iv). We anti-
cipate that, much like the hard-braking data that is
now commercially available, similar winter operations
data will soon be available in real-time.

From the results of the study, the below points pro-
vide an overview of the implementation opportunities
for CAN Bus technology.

1. Near-term (6–18 months):

a. Hard-braking data. Develop relationships with CV

data providers to integrate hard-braking events into

TMC operations to identify safety hazards.

b. Loss of friction data. Develop relationships with CV

data providers to integrate loss of friction data (ABS

or traction control) into TMC operations and coordi-

nate with winter weather maintenance colleagues.

c. Pavement irregularities data. Develop relationships

with CV data providers to identify locations of pave-

ment distress or work zone irregularities using vehicle

accelerometers, pitch, roll, and steering.

2. Medium-term (18 months or longer):

a. Weather data. Evaluate the feasibility of capturing

weather-related data such as windshield wipers, def-

roster settings, and temperature readings to enhance

TMC and winter weather management activities.

Figure 1.1 Evolution of probe and connected vehicle data.
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Figure 1.2 Heatmap of traffic speeds with friction overlaid on I-465, January 12, 2019.
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b. Institutionalizing business processes. Develop plans to

integrate this data into business processes used by

central office, districts, sub-districts, and units. The

winter weather data is particularly valuable to sub-

districts and units.

1.2 Dissemination of Research Results

The following is a list of papers prepared in part
during the course of this project:

N Desai, J., Mathew, J. K., Kim, W., Liu, M., Li, H., Brooks,

J. D., & Bullock, D. M. (2020, January). Dashboards for

real-time monitoring of winter operations activities and

after-action assessment [Paper presentation]. Transpor-

tation Research Board 99th Annual Meeting, Washing-

ton D.C. https://doi.org/10.5703/1288284317252

N Downing, W. L., Li, H., Morgan, B., McKee, C., &

Bullock, D. M. (2018, January) Using probe data analytics

for assessing freeway speed reductions during rain events

[Paper presentation]. Transportation Research Board

98th Annual Meeting, Washington D.C.

N Downing, W. L., Li, H., Desai, J., Liu, M., Bullock, D.

M., & Baldwin, M. E. (January 13, 2020). Evaluation of

the high-resolution rapid refresh model for forecasting

roadway surface temperatures [Paper presentation]. 100th

American Meteorological Society Annual Meeting, Bos-

ton, MA. https://ams.confex.com/ams/2020Annual/web

program/Paper366492.html

N Li, H., Wolf, J. C., Mathew, J. K., Navali, N., Zehr, S.

D., Hardin, B. L., & Bullock, D. M. (2020, March).

Leveraging connected vehicles to provide enhanced road-

way condition information. Journal of Transportation

Engineering, Part A: Systems, 146(8). https://doi.org/10.

1061/JTEPBS.0000370

N Desai, J., Li, H., Mathew, J. K., Cheng, Y., Habib, A.,

& Bullock, D. M. (2020, November). Correlating

hard-braking activity with crash occurrences on inter-
state construction projects in Indiana. Journal of Big
Data Analytics in Transportation. https://doi.org/10.1007/
s42421-020-00024-x

These technical papers were prepared throughout the
project and distributed to key INDOT stakeholders to
facilitate early implementation of the research findings.
The following sections of the technical report summar-
ize key findings from these papers.

2. CAN BUS DATA ELEMENTS

CAN Bus data are generated by various components
and devices on modern vehicles and transmitted via
multiple onboard networks (Hristu-Varsakelis & Levine,
2005). General diagnostic codes and other data can be
accessed by connecting to the OBD-II port. This port is
typically used for routine maintenance and troubleshoot-
ing, but other data may be accessed with this interface
(Hristu-Varsakelis & Levine, 2005). Depending on the
vehicle, additional data can be accessed via other network
interfaces besides the CAN Bus.

The data elements that are pertinent to winter
roadway condition monitoring are identified and des-
cribed in the following subsections. Table 2.1 provides
an overview of each CAN Bus data element on the
recommended implementation timeline.

2.1 Speed

Slow speeds of various vehicles at specific road seg-
ments are a good indication of heavy traffic, accidents
and weather events. Cross-referencing different CAN
Bus data elements narrows down what specific scenario



TABLE 2.1
CAN Bus data element implementation timeline

Data Element

Implementation Timeline

6–12 months 12–18 months .18 months

Speed

GPS1

ABS

Brake Pressure

Traction Control Systems

Wheel Counters

Drive Mode

Wheel Torque

Longitudinal and Latitudinal Acceleration

Yaw Angle

Pitch and Roll

Steering Angle

Windshield Wipers

Defroster

Ambient Temperature

Lighting

Hazard Lights

ADAS and Emergency Systems

TPMS

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

1Factory equipment or after-market devices.

is happening on the road. Slow speeds detected while
windshield wipers are active, preceded by a drop in the
ambient temperature, would help agencies identify seg-
ments that are being significantly affected by precipita-
tion. Further, slow speeds in combination with hazard
lights being turned on could imply that there was an
accident.

In general, speed data can be utilized with other
CAN Bus data elements to define events. For example,
a big change in vertical acceleration while traveling at a
high speed may be an indication of a pothole.

2.2 GPS

GPS data has a broad variety of uses:

N GPS information helps categorize the different types of
events. For example, a hard-braking event near an
intersection may suggest the incursion of a vehicle in the
dilemma zone, whereas a hard-braking event in a rural
road could indicate animal crossings. Being able to
reference vehicle events on a map enables agencies and
transportation professionals to assign greater relevance
to certain events of the same type according to their
location.

N GPS data provides the ability to geographically locate
poor road conditions, such as potholes and transverse
cracks, that require of maintenance.

N Vehicle trajectories can be obtained, which provide valu-
able information to assess roads, such as: travel time,
travel speed, volumes, capacities, delays, etc.

N GPS data can also provide useful information to evaluate
signalized intersections. For example, Figure 2.1 shows
7,292 different vehicles that crossed US 231 and SR 25 in
July 2019. Even though this number does not represent
all the vehicles that crossed the intersection, it provides a

Figure 2.1 Example of crowdsourced GPS coordinates
exiting an intersection over 1 month at US 231 and SR 25
in Lafayette, IN.
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good comparison point if the same analysis was to be

done at other intersections.

2.3 Braking Systems

2.3.1 Anti-Lock Brake Systems (ABS)

ABS intervenes in vehicle braking to prevent the
wheels from locking up. The intervention occurs at



areas where there is low friction due to icy, snowy,
slushy, or gravel conditions, and the brakes are applied.
Typically, this occurs at intersections, in advance of a
stopped queue on limited-access roadways, or at other
locations where there is a need to decelerate. An exam-
ple of a location where ABS intervened is shown in
Figure 2.2 with an ice patch (callout i) in advance of a
stop sign. This event does not get triggered during acce-
leration or at cruising speeds.

2.3.2 Brake Pressure

The intensity of brake pressure is a good indicator
of abrupt safety hazards faced by motorists along a
roadway. For instance, hard-braking events will aid
agencies and transportation professionals in identifying
areas with poor geometric conditions and studying
dilemma zone exposures at intersections. Figure 2.3
shows an example of the brake pedal intensity data
collected during the study.

Figure 2.2 Icy area in advance of a stop sign that triggers
ABS intervention.

In addition, during inclement weather conditions
changes in typical brake pressure from normal can be
used as an indicator for deteriorating conditions.
Figure 2.4 shows the results of an experiment con-
ducted over the course of a winter storm at the app-
roach of a signalized intersection. Eighteen runs were
made throughout the storm starting from dry condi-
tions. Figure 2.4a shows the brake pressure during each
approach and callout i shows the period where falling
snow was visible or had accumulated on the road. As
the chart shows, before snow started (Figure 2.4b) there
was comparatively less braking pressure applied than
during the period when snow was visible to the driver
(Figure 2.4c). Detailed data and analysis can be found
in Appendix A.

2.4 Drivetrain

2.4.1 Traction Control Systems

Traction control systems are designed to maintain
vehicle stability by using electronic means to modulate
the brake force, throttle, and/or engine output when
loss of friction is detected on one or more wheels of
the vehicle (Moran & Grimm, 1971). For example, in
slippery conditions when the throttle is applied, the
engine output may be greater than the amount that can
be put down by any one of the tires. During a winter
event, having the ability to detect locations of traction
control intervention events provides a considerable
advantage in making real-time maintenance decisions.

2.4.2 Wheel Counters (Ticks)

Wheel counters are electrical pulses that are gener-
ated products of a wheel’s rotation. These pulses can be
utilized to calculate the wheel’s position, speed and

Figure 2.3 Brake pedal intensity.
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Figure 2.4 Changes in brake pressure intensity during snowfall event.

Figure 2.5 Measured wheel counter (ticks) during a slippery condition.
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acceleration. This data can provide valuable informa-
tion on various scenarios, such as the following:

1. Identification of road surface: gravel, asphalt or concrete.
Small changes of wheel speed occur constantly when a
vehicle is traveling on gravel. In contrast, when a vehicle is
on asphalt or concrete the speed is almost constant.

2. The identification of sudden changes on wheel acceleration
for short periods of time are a good indication of a vehicle
going over a pothole.

3. A significant difference in the speed of wheels that are on
the same axis during winter season can be a useful warning
to agencies of road segments with icy conditions.

Wheel slippage can be detected using high-speed
wheel counter data such as in Figure 2.5. The graph
plots the speed of each wheel at 100 ms during a braking
event (fd: front driver; fp: front passenger; rd: rear dri-
ver; rp: rear passenger). At minute 02:50.3, the vehicle’s
front passenger wheel locks up over a slick area (callout
i) where the wheel slowed down considerably compared
to the three other wheels.

2.4.3 Two-Wheel Drive, Four-Wheel Drive, and
All-Wheel Drive

A vehicle may operate in different modes depending
on the drivetrain that sends power to any number of
wheels on the vehicle. In low-friction scenarios, the
wheels may slip differently for an axle that is part of the

drivetrain compared to a dead axle. For two-wheel
drive vehicles, it is important to know whether the
vehicle is front or rear-wheel drive so that the correct
CAN messages are interpreted accordingly. For four-
wheel drive applications, this is typically configurable
by the driver for rear-axle drive only, or power to both
front and rear axles. Some vehicles can also engage
locking differential to output torque evenly across each
side of an axle, typically used for low-speed, rough road
conditions. All-wheel drive vehicles use either torque
biasing, or sensors and electronics to distribute torque
on any axle and wheel automatically without explicit
driver input (Armantrout & Dick, 1971; Torrii et al.,
1986; Zomotor et al., 1986).

2.4.4 Wheel Torque Distribution

For vehicles that have electronically-controlled dri-
vetrains, depending on the road conditions and driver
input, the torque output to each wheel is adjusted
automatically to maintain vehicle stability and control.
These adjustments in wheel torque distribution can be
monitored in the CAN data to determine when the
vehicle drives through inclement conditions, such as
driving over a patch of snow that is not evenly distri-
buted across four wheels. These features are applicable
for both two-wheel drive and four/all-wheel drive
vehicles depending on vehicle equipment (Torii et al.,
1986; Zomotor et al., 1986).



2.5 Accelerometer

2.5.1 Longitudinal, Latitudinal, and Vertical
Acceleration

In addition to the vehicle dynamics, the acceleration
data has the potential to identify roadway character-
istics and pavement quality. Several studies have estab-
lished this in the literature using inferior smartphone
data (Alessandroni et al., 2014; Buttlar & Islam, 2014;
Hanson et al., 2014; Islam et al., 2014). One of the
early applications of this data involves the detection of
potholes. Figure 2.6 illustrates the team collecting the
lateral acceleration data from the vehicle. This type of
data can be integrated with a web dashboard to show
on a map where and when the harsh accelerations were
experienced (Figure 2.7).

In the absence of detailed brake pedal pressure or
activation data, longitudinal acceleration can serve as a
proxy for hard braking events. When the brakes are
applied forcefully, causing the vehicle to decelerate
rapidly, the accelerometer registers a high value along

the longitudinal axis. Figure 2.8 plots the hard-braking
events per mile for 25 construction zones in both
directions throughout the state (blue bars) and com-
pares this number with crashes in the same zone (orange
line). A strong relationship is evident since the number
of hard braking increases as the number of crashes also
increases.

2.5.2 Yaw Angle

The magnitude of the yaw angle can provide valuable
information on the change in direction of the vehicle.
Yaw angles too big while vehicles travel at high speeds
might indicate loss of stability and friction, unexpected
sharp turns, or other arising safety concerns.

2.5.3 Pitch and Roll

Pitch and row position, speed and acceleration can
provide good road-condition assessments. Sudden
changes of acceleration for brief periods of time can
help with the detection of potholes. Moreover, quick

Figure 2.6 Lateral acceleration.

Figure 2.7 Dashboard for pothole detection using lateral acceleration.
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Figure 2.8 Plot of hard crashes/mile vs. hard braking events/mile for July and August 2019 construction zones.

Figure 2.9 Dashboard view of pitch and roll angle on a Ford
F-150.
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changes on roll speed might indicate a shoulder that
may be challenging to negotiate for drivers. Figure 2.9
shows an example of a dashboard interface for pitch,
roll, and steering angle in a late-model Ford F-150.

This information, in combination with GPS data,
indicates what type of roadway maintenance is required
and where it is needed. Even though these indicators
may not be accurate enough to replace standard road-
quality measurements, they can provide agencies and
contractors guidance on which roads are worth looking
at with more detail.

2.6 Steering Angle

Steering angle indicates the driver’s steering input to
the vehicle. In inclement road conditions, it can reveal
the steering response of a driver relative to how a
vehicle is actually moving or turning by comparing with
data from other sensors such as yaw. Figure 2.10a shows
testing of the steering angle with CAN Bus analysis
software. As the driver turns the wheel to the right
(callout i), the steering angle value increases positively on
the computer’s interface (callout ii). Figure 2.10b shows
the real-time data plotted as the steering wheel is turned.

2.7 Climate and Temperature

2.7.1 Windshield Wipers

Windshield wipers are usually activated during
weather related events. This data will be a great source
of information to do the following:

1. Detect weather events such as rain, snow, and icy
conditions.

2. Compare and contrast actual ground conditions with
weather forecast models.

Figure 2.11 shows an example collecting the CAN
Bus data coming from the activations of the windshield
wiper.

2.7.2 Defroster

Defroster activation can indicate whether a vehicle
is experiencing in-cabin visibility issues due to high
humidity, windshield icing or frost conditions (Figure
2.12). Segments of roadway that experience high levels
of defroster activation may be a concern for increased
driver workload and on-road attentiveness. The data is
low-frequency as only the change in defroster mode (on
or off) is required to be saved.

2.7.3 Ambient Temperature

Ambient temperature, usually received by sensors
located in the bumper of a vehicle, can detect changes
in air temperature above the roadway as a proxy to
where ice may be forming. In the past decade, a num-
ber of initiatives across the country have begun to
crowdsource weather reports using mobile applica-
tions (Elmore et al., 2014; FHWA, 2017). The reports
allow agencies to rapidly assess on-the-ground weather
conditions over a large area where road weather sen-
sing infrastructure may not be available. Ambient
temperature decoded from CAN data that is integra-
ted with the cloud can allow agencies to automati-
cally monitor temperatures without user input and
reduce driver distraction with a method that is also
scalable.



Figure 2.10 Steering angle testing on 2014 Suburban.

Figure 2.11 Windshield wipers.
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2.8 Lighting Systems

The lighting system is one of the most basic features
on a vehicle that affects driver visibility. Common in
most vehicles produced today, light sensors detect and

automatically adjust, and turn on and off headlights
(Groh, 1997). Some of the more sophisticated ADAS
systems also control high beam actuation based on
detection of on-coming traffic (Stam, 2001). Depending
on roadway conditions such as day/night, rain, snow,



Figure 2.12 Windshield defroster button activation.

Figure 2.13 ADAS systems and challenges.
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and areas of dense fog, the lighting settings can indicate
where there may be visibility challenges for the driver or
camera-based ADAS (Gallen et al., 2015). Monitoring
lighting system function may allow agencies to pro-acti-
vely target deployment of speed management tactics,
such as variable speed limits.

2.9 Emergency Systems

2.9.1 Hazard Lights

Hazard light activations on roadways typically indi-
cate where vehicles have stopped or slowed due to
roadway conditions such as heavy rain, icing, fog, pre-
sence of a slowed queue, animals, or vehicle malfunction.
This activation can be received from the CAN Bus, and if
delivered to a traffic management center would poten-
tially allow agencies to actively monitor roadway hazards
using a real-time integrated system.

2.9.2 ADAS and Emergency Systems

Recent developments in ADAS technologies enable
vehicles to partially control itself and provide feedback

to the driver using camera-based machine vision or
LiDAR-based roadway detection systems (Gotzig &
Geduld, 2016; Risack et al., 2000). An example of a
lane detection and departure warning system is shown
in Figure 2.13a. During conditions where visibility on
the sensors is obscured, the deactivation of the ADAS
feature may serve as an indication of roadway hazards,
such as during heavy icing, snow, or fog conditions
(Figure 2.13b). In some more extreme scenarios, such as
in the event of a crash, mechanical breakdown, or
driver request, some vehicles automatically send data to
the cloud to request for assistance (Martin, 1996). There
is tremendous potential for enhanced real-time roadway
monitoring integrating with these systems to a centra-
lized system at a traffic management center.

2.9.3 Tire Pressure Monitoring

Tire pressure data is capable of providing informa-
tion on the road’s condition. Fast changes of pressure
in a tire is a good indication of a vehicle hitting a curb,
a pothole, a deep transverse joint or another similar
road anomaly. Early identification and location of



these points allows agencies to quickly detect and
provide maintenance before receiving reports from the
motorists.

Further, this data can be complemented with other
CAN bus elements that provide road-condition assess-
ments (e.g., accelerations, pitch, and roll) to provide the
most accurate information possible.

3. CAN BUS DATA INTEGRATION

The majority of communications between the differ-
ent electronic control units (ECUs), sensors, analog-to-
digital converters and other nodes inside a vehicle are
performed following the CAN serial communications
protocol (Hristu-Varsakelis & Levine, 2005). This sec-
tion provides a high-level description of how this data
can be obtained, stored, and accessed.

3.1 Interface

The CAN interface requires a specialized connector
or twisted pair and is not directly connectable to
computers and other host devices (e.g., smartphones or
tablets). For this reason, a vehicle interface (VI) that
converts wiring from the vehicle to a host-device stand-
ard connector such as a 9-pin serial or USB adaptor is
required.

There exists a wide variety of VI devices in the
market (e.g., Panda, CANedge2, and ELM 327 to name
a few) that are capable of connecting CAN to another,
host-device readable protocol. These devices usually
connect to the vehicle’s OBD-II port located under the
vehicle’s dashboard, shown in Figure 3.1 (SAE, 1995).
Through this port, vehicle data that is transmitted in
protocols such as CAN, SAE J1850, or ISO 9141 can be
accessed. Pin 6 and 14 are used for the CAN protocol.

Figure 3.2 shows examples of connecting to the
OBD-II for CAN communication on a vehicle. An open
OBD-II female connector is shown in Figure 3.2a.
A wireless adaptor can be plugged into this connector as
shown in Figure 3.2b. This particular adaptor acts as a
wireless hotspot for other hosts to connect and stream
CAN data using a dedicated Python library. Figure 3.2c
shows an example of a wired connector (callout i) and
CAN interface device (callout ii) that connects to the
laptop via USB. Software on the laptop is able to
interpret the CAN messages in real-time.

If the OBD-II port is not available, access to the
CAN network can be performed through accessing the
twisted pair itself. In this scenario, special considera-

Figure 3.1 OBD-II pinout.

tions are needed to make sure that the interface works
at the required voltage and current levels to prevent
short circuits from happening (Corrigan, 2016).

3.2 Decoding

A standard CAN message is shown in Figure 3.3
(Hristu-Varsakelis & Levine, 2005). Every message is
composed of various frames that allow for a successful
transmission. Nevertheless, only two frames are rele-
vant for a higher-level application. The first one is the
identifier, also known as arbitration ID (ArbID), which
establishes the meaning of the message, indicates its
source and specifies its relevance. The second important
frame is data, which is the actual information being
transmitted (Corrigan, 2016). The VI devices usually
come with software that can separate CAN messages
into its different frames, allowing users to visualize and
manipulate the relevant data.

Once the identifier and data frames have been obtained,
it is necessary to decode the data to make it mean-
ingful. A single data frame (up to 64 bits) may contain
several signals (Figure 3.4). A signal is composed by
a number of bits from the data frame that refer to
a specific vehicle variable (e.g., vehicle speed, state
of locks, or RPM). These signals may also need to be
scaled.

For example, let us suppose that a message with the
identifier 0x4D6 was received, and it contained the
value 0x000000000000100D in the data frame. The first
thing to do would be to identify what information does
the 0x4D6 ArbID provide. Then, the proper scaling to
the different signals contained in the data frame should
be applied. It could be that the 0x10 byte is a signal that
refers to the state of the hazard lights and 0x0D could
be a signal that refers to the vehicle’s speed. In the case
of the 0x10 signal, that particular value may indicate
that the hazard lights are on, whereas a value of 0x00
may indicate that the lights are off; therefore, no scaling
is necessary. Nevertheless, when dealing with the speed
signal, 0x0D (13 in decimal) at the time the data was
read, it might be required to multiply this value by two
to obtain the vehicle’s speed in the correct scale.

The original equipment manufacturers (OEMs)
define the information regarding what data the different
ArbIDs provide, as well as the scaling rules (Menon,
2014). Agreements and partnerships with OEMs can
help decode, define, and scale CAN messages using
vector database files (DBC). For demonstration pur-
poses, a ‘‘cause-and-effect’’ experiment can be conducted
by affecting the vehicle and monitoring the response of
the CAN data stream.

The ArbID and the specific signal referring to the
wheel-ticks (speed) of the copilot side’s wheel of a 2013
Chevrolet Suburban was obtained by such an experi-
ment (Figure 3.5).

N The first step of the process is to read and save all the
messages transmitted in the vehicle’s CAN network for a
period of time without activating the signal that is being
searched (Figure 3.5a).
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Figure 3.2 OBD-II connector interfaces

Figure 3.3 Standard CAN message.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/20 11

N The second step is similar to the first, but it requires the

activation of an event that is believed would trigger

messages containing the signal. Figure 3.5b shows how a

person is manually spinning the wheel, while a file

containing all the messages transmitted is saved. After

this, the file created in step one (background.csv) and the

file created in step two (test1.csv) are compared. ArbIDs

that appear in test1.csv, but not in background.csv, are

flagged for further analysis.

N In step three, the flagged ArbIDs with their data frames

are displayed on real-time to allow for manual testing

(Figure 3.5c and Figure 3.5d). At this part of the process,

the user can trigger the signal whenever it is convenient

and see real-time changes in a computer terminal. Figure

3.5, callouts i and ii, show the result of the reverse-

engineering process.

The ArbID containing the copilot’s wheel-tick infor-
mation is 0xC5, whereas the specific signal providing
the actual value is the byte inside the red squares
(callouts i and ii).

smerr
Text Box
(a) An open OBD-11 connector on a Ford F-150

smerr
Text Box
(b) Comma.ai Panda device with Wi-Fi connectivity

smerr
Text Box
(c) NeoFire IV device connected to a Windows laptop via USB



Figure 3.4 Data signals.

Figure 3.5 Reverse-engineering CAN bus signals.
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3.3 Transfer and Storage

There are various ways in which CAN data can be
transmitted and saved. As stated in section 3.1, a
vehicle’s OBD-II port can be utilized to transmit CAN
data with the help of a VI device. The CAN data is
received at high frequency, often times at 10 or 20 ms
intervals depending on the type of message. The VI
devices buffer the messages, and then transfer the read
data through USB, Bluetooth, or Wi-Fi to another
device for processing; or they could save the raw
information in SD cards for future analysis. Since there
can be hundreds if not thousands of different messages
generated from a single vehicle at high frequency,
thoughtful consideration is needed as to which of those

messages are saved for one or more specific use cases,
how often they are saved, and which messages to dis-
card to not overwhelm the processing system.

Once the vehicle’s CAN data is received by the host
device (laptop, embedded computer, smartphone, or
tablet), it can be processed, re-transferred, and/or
stored. For example, if a real-time analysis is desired,
an embedded computer could process the data and then
send the relevant information to a smartphone for dis-
play. If real-time analysis is not required, then the host
device could simply save the information in a CSV file
to process the data later. If the objective is to examine
an entire fleet, then the received data by each vehicle
could be inserted in a database, which would facili-
tate a broad analysis. The most efficient transfer and



Figure 3.6 High-level network diagram of possible data transfers.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/20 13

storage of data will depend on the task’s objectives and
scope.

Figure 3.6 shows a high-level network diagram with
examples of possible data transfers. Not all possible
data exchanges are displayed.

3.4 Access

Just as there are various options for the transfer and
storage of data, there also exists many ways in which it
can accessed. If data was stored in a database, the use of
queries and database connectivity libraries are necessary
to extract specific data. User roles and privileges would
need to be defined in the database management system.
For CAN data saved in files such as .csv, .xlsx, .txt, or
similar, Microsoft Excel or a flat-file reader may suffice
for simple viewing on the machine or file system which it
is stored. More complex analysis may require using
applications written in Python or C++ to read, process,
and display the data. If the data received is to be pro-
cessed and displayed in an online dashboard, access to
the site can be public, or by delegating roles and users,
and perhaps providing instructions on what set of data
is visible to certain groups.

4. WEATHER DATA INTEGRATION

Current sources for assessing winter roadway condi-
tions involve acquiring data from national repositories,
agency-maintained mobile and stationary sensors, pri-
vate weather service providers, field observations, and
social media (Gopalakrishna et al., 2016). According
to a FHWA report, a poll of 39 states found that all
responding departments of transportation had sub-
scribed to at least one type of National Weather Service
product in 2015 for weather maintenance and opera-
tions (Gopalakrishna et al., 2016). As part of the
effort to gradually incorporate vehicle CAN Bus infor-
mation into winter operation metrics, the current

state-of-the-practice in public weather products, as well
as emerging sources, provides high-level assessment,
model validation, forecasting, and data supplementa-
tion to the emerging vehicle data effort. The following
subsections describe four weather data sources that
were investigated and incorporated into the project as
part of the weather data implementation effort.

4.1 North American Land Data Assimilation System
(NLDAS)

NLDAS is a climate and weather dataset provided
by NOAA and NASA (Xia et al., 2012). The data is assi-
milated to 1/8th degree spatial resolution and provides
weather variables such as surface skin temperature, solar
flux, and precipitation type and rate at 1-hour intervals.
In collaboration with Purdue University College of
Science, a near real-time data ingestion process popula-
tes a database during the winter season (November to
March) from which dashboards for after-action reviews
and CAN Bus data are integrated. Figure 4.1 shows
an integrated dashboard of three plots from NLDAS
data during a snow event on December 15, 2019 in the
Crawfordsville district. The charts plot wintry precipita-
tion, solar flux, and surface skin temperature over a
48-hour period. The data are presented as interquartile-
range (IQR) bars for every hour over all data points in
the district.

4.2 Doppler

Doppler data is output from the NOAA National
Severe Storms Laboratory (NSSL) Multi-Radar/Multi-
Sensor System (MRMS) (NSSL, n.d.). The system
offers a variety of products at 1 km spatial resolution
and at different temporal frequencies depending on the
product. For this research, the Seamless Hybrid Scan
Reflectivity (HSR) is used for validating ground truth
data and populating dashboards. Seamless HSR is an



Figure 4.1 NLDAS data for Crawfordsville, December 15–16, 2019.
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assimilated product of various radar systems in the
continental United States, producing Doppler reflectiv-
ity, precipitation type and rate at 2-minute fidelity. The
data is provided in GRidded Information in Binary
(GRIB) format and is fetched from NOAA repositories
via File Transfer Protocol (FTP) (NOAA/National
Weather Service, 2010). Figure 4.2 shows an integrated
speed map with Doppler overlaid for a severe storm
over metro Indianapolis on April 8, 2020. The green
and yellow colors indicate trace amounts of precipita-
tion where the orange, red, and purple indicate high
reflectivity levels from heavy precipitation or hail.
Callout i shows a segment of I-465 on the northwest
side of Indianapolis where speeds have dropped below
35 mph as indicated by the orange color highlighting
the segment on the map.

4.3 High Resolution Rapid Refresh (HRRR)

The HRRR system is an improvement on the
existing Rapid Refresh (RAP) hourly weather data
assimilation model and forecast system developed by
NOAA (Benjamin et al., 2016). HRRR provides dozens
of weather variables at 3 km spatial resolution and

provides forecasting up to 18 hours at 1-hour incre-
ments. Figure 4.3 shows an example of surface wind
gust data for April 17, 2020 visualized using the NOAA
Weather and Climate Toolkit (NOAA, 2020). For the
project, each HRRR data point is mapped to a road
segment and makes use of the direction of travel to
determine the effects of directional weather variables
(such as wind) on traffic behavior.

4.4 Mobile Road Weather Information System
(MARWIS)

The MARWIS is an infrared system that estimates
road friction, snow and ice, water film height, and
surface temperature (Bunnell et al., 2016). The device is
typically mounted on the rear or side of a vehicle and
reports measurements up to 1-second frequency. During
the course of the project, MARWIS was collected and
reconciled with CAN Bus data during winter road
testing to compare, contrast, and verify estimated fric-
tion and slip calculated from the vehicle. MARWIS
measurements are accurate up to about 50 mph (Bunnell
et al., 2016).



Figure 4.2 Doppler data during severe storm, April 8, 2020.

Figure 4.3 Surface wind gust potential using HRRR, April 17, 2020.
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5. ENGAGEMENT WITH STAKEHOLDERS

5.1 INDOT

A workshop was conducted in November 2017 with
INDOT Research Division and the Traffic Manage-
ment Center, Purdue researchers, and Intrepid CS, a
provider of vehicle networking devices. The workshop
gave an overview of some CAN interface technologies
and demonstrated capabilities using third-party devices
connected to a test vehicle. Some activities of the work-
shop are highlighted in Figure 5.1.

5.2 Industry Partners

Several engagement activities were conducted with
public agencies and industry partners over the duration
of the project. The below sub-sections highlight key
activities with the stakeholders that have furthered use
case development and implementation of the project.

5.2.1 Volkswagen

Researchers engaged with Volkswagen of America
Electronics Research Laboratory (VW-ERL) from Q4



Figure 5.1 CAN workshop with Intrepid CS, November 2017.

Figure 5.2 Enhanced probe data collection with VW-ERL.
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2017 through Q4 2018 on developing use cases from
data retrieved through the CAN bus. Two cases were
implemented and tested in Indiana: Traffic Light
Indication (TLI) and enhanced probe data for winter
weather applications. A loan vehicle was provided to
Purdue during the collaboration. Research outcomes
were presented in the FHWA Road Weather Main-
tenance Meeting in 2018, the TRB 2019 Annual
Meeting, 2019 Purdue Road School, and the 2019
AASHTO Maintenance Committee summer meeting.
Figure 5.2 shows testing with the Audi A4 Allroad
vehicle during winter weather conditions (Figure 5.2a)
and corresponding dashboard showing traction control,
ABS, and windshield wiper activations from the test
(Figure 5.2b). The data is streamed in real time to
Purdue hosts for querying by the dashboard.

5.2.2 Nira Dynamics AB

Nira Dynamics AB, based out of Sweden, is known
for their innovations in vehicle onboard analytics and

road perception. The company employs tire pressure
sensors and uses the sensors to gather information
about road roughness, potholes and road bumps (Nira
Dynamics AB, n.d.). The team is currently exploring
potential collaboration opportunities to deploy this
innovative technology on a local fleet (Figure 5.3).

5.2.3 Wejo

Enhanced vehicle data from the automotive industry
was available for researchers through a collaboration
with Wejo. Hard-braking data collected from anony-
mized consumer vehicles where a deceleration of greater
than 0.26 g was retrieved in scale. The dataset contains
global coordinates and time stamp for a hard-braking
event that occurred. Figure 5.4a shows 1.5 million hard-
braking events over a 1-week period in August 2019
within the state of Indiana, with each red dot signifying
a hard-braking event. Figure 5.4b illustrates a histo-
gram of the hard-barking events from vehicles travel-
ling above speeds of 45 mph on I-65. Callouts i–iv



Figure 5.3 Collaboration with Nira Dynamics AB partners, September 17–21, 2018.

Figure 5.4 Hard braking events over 1-week period.
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represents the active work zones during this period.
Potential research applications for hard braking events
include identifying safety hazards at work zones, sig-
nalized intersections, interchanges and entry/exit ramps.
More information can be found in Appendix E.

5.2.4 General Motors

General Motors representatives engaged Purdue
researchers and INDOT in January 2019 and Jan-
uary 2020 during the Transportation Research Board
Annual Meeting. A number of teleconferences were held
between General Motors, INDOT, and Purdue
researchers in Q2 2020 to discuss forthcoming colla-
borative opportunities.

6. WEB PORTALS FOR DATA INTEGRATION

Five dashboard applications were developed for the
project by Purdue investigators. One additional dash-
board was developed in collaboration with an industry
partner. The section below provides a brief overview of
the dashboards and the applied use cases.

6.1 Speed Heatmap for Automatic Vehicle Location and
Mobile Road Weather Information Sensor

A ‘‘heatmap’’ dashboard integrates traffic speed over
miles of interstate routes with built-in snow plow
trajectories using Automatic Vehicle Location (AVL)
devices and Mobile Road Weather Information Sensor
(MARWIS) friction values. Figure 6.1 shows an exam-
ple speed heatmap with trajectories of friction values
collected from a plow truck equipped with MARWIS
overlaid for a major winter storm on I-465 on January
12, 2019. Horizontal black lines indicate the locations
of INDOT cameras where ground-truthing can be
carried out to verify the data.

Callout i shows the trajectory of the plow truck
before the storm, where traffic speeds are operating in
the 55 to 64 mph range and the friction is detected as
‘‘good.’’ Callout ii shows the beginning of the storm
where the traffic speeds drop to below 35 mph and the
friction starts to deteriorate into the ‘‘caution’’ and
‘‘extremely bad’’ ranges. Callout iii shows where there
were challenges after the height of the AM peak has
passed but a second band of snow enters the area.



Figure 6.1 Heatmap of traffic speeds with friction overlaid on I-465, January 12, 2019.

Figure 6.2 Heatmap of traffic speeds with integrated camera images, December 16, 2019.
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Finally, callout iv shows a recovery period during the
PM peak where both traffic speeds are mostly above 44
mph and the friction has returned to ‘‘good.’’

An example of using the speed heatmap to pull
camera images for data verification is shown in Figure
6.2. In this view, 1-minute cached camera images are
stored in an SQL database and temporally and spa-
tially aligned to pixels on the heatmap. When the user
mouse-overs a pixel, the image at the time and location
of the pixel is displayed. Additionally, the heat map
populates property damage only (PDO), injury, and
fatal crashes with hollow white, gray, and black circles
respectively.

6.2 Winter Weather Enhanced Probe Data Map

A web dashboard was developed to plot locations
where there was traction control intervention, ABS,
harsh acceleration, hazard lights on and off, windshield
wipers, temperature, and vehicle heading on a Google
Maps overlay. The data was transmitted from a logging
computer directly connected to the in-vehicle bus to
external servers to process the information for the
dashboard. Figure 6.3 shows an example screenshot
from the application during an ice storm on I-70 in
Missouri. Callout i shows locations where the wind-
shield wipers were activated manually. Callout ii and ii



Figure 6.3 Dashboard displaying traction control, ABS, hazard lights, and windshield events during an ice storm on I-70 in
Missouri.

Figure 6.4 Hazardous conditions dashboard with color representing slip ratio of roadway segments.
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shows where the hazard lights were turned on, then off
during an unsafe driving area. Callout iv shows a
location where the traction control system intervened.
The dashboard works in real-time as well as having the
ability to look at historic data.

The dashboard can also visualize the amount of slip
experienced by the vehicle on segments of roadway. Slip
is measured by taking individual wheel speeds of a single
vehicle and computing the absolute maximum diffe-
rence any single wheel is experiencing from the others.

Figure 6.4 shows an example of the dashboard with
colored segments of roadway, with green being good
friction to red and pink to slippery conditions, this
shows the road conditions while driving in a loop near
Purdue campus during a snow event on March 24, 2018.

6.3 High-Fidelity Weather Heatmap

A near-real-time dashboard was developed to inte-
grate NOAA High-Resolution Rapid Refresh (HRRR)



Figure 6.5 High-fidelity weather heatmap showing wind gusts alongside traffic speeds, March 3, 2020.

Figure 6.6 Integrated fuel consumption estimation and brake pressure dashboard.
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data alongside traffic speeds. The dashboard can dis-
play 24 different weather variables including wind
speed and direction, visibility, and solar radiation per
forecast, aligned to interstate routes at 3 km resolution.
Figure 6.5 shows the dashboard for a wind event on
March 3, 2020 on I-65. The chart on the left shows the
wind gust speed for the 0th hour (most up-to-date)
forecast between mile marker 180 and 210. Callout i
indicates the crash location of three semi-trucks due to
high winds at mile 199. This is also reflected on the
right-hand traffic speed heatmap (crash location at
callout ii). The route was shut down after the crash
(callout iii) causing a 5-mile queue (callout iv).

6.4 Integrated Fuel Consumption, Brake Pressure, and
Traffic Signal Prediction Application

A real-time dashboard was developed integrating
brake pressure, fuel consumption calculated from the
mass airflow, and cruise control speed data from the

CAN Bus. The dashboard matches a vehicle’s current
trajectory with an approaching traffic signal. Using
historical phase probability information from the signal
controller, the application is able to display the current
vehicle’s speed, green probability at arrival to the next
intersection based on time-of-day and day-of-week,
integrated with cruise control speed (if active) and
audible speed advisory and stop-or-go decision, brake
pressure, and cumulative fuel consumption. Figure 6.6
shows a screen capture from the dashboard for a vehicle
on travelling along US-231 in West Lafayette during
actuated-coordinated operation. There is also an option
to fully integrate the dashboard with video input.

6.5 District-Level Vehicle Utilization

A management-level dashboard was developed to
monitor vehicles equipped with AVL at a district level.
Data from GPS-embedded computers and speed heu-
ristics determine activity type and duration for any



Figure 6.7 District-level vehicle utilization dashboard.

Figure 6.8 Daily utilization dashboard for a single maintenance vehicle.
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equipped vehicle. Figure 6.7 shows a screen scrape of
vehicle utilization between May 2019 and January 2020
for AVL-equipped sweepers in Greenfield district.
Graphs from the dashboard track total miles driven
and hours operated by day per district. High-level views

make use of pie charts to monitor utilization of all
vehicles across the six districts. A drill-down feature
allows a per-vehicle view, as seen in the Gantt chart in
Figure 6.8, which tracks the daily hours actively work-
ing, in transport, or idling.



7. DEPLOYMENT

7.1 Single Vehicle Pilot

A pilot system to implement CAN Bus data into a
real-time dashboard for one vehicle was developed as
part of this project. The VI used for the implementation
was Comma.ai’s Panda device to receive CAN mes-
sages from the vehicle and stream the data to an
external device via Wi-Fi (Figure 3.2). A Raspberry Pi
embedded computer on the vehicle receives the stream
from Panda and decodes signals of interest using pre-
installed DBC files (Figure 7.1). The computer also
transforms the data into a format that can be saved
locally on the device or can be transmitted over cellular
network to endpoints on external servers.

Figure 7.2 shows the architecture for the pilot
system. From within the vehicle the embedded compu-
ter sends the transformed data over 4G or 5G networks,
through the cloud, to be displayed on a web interface.
The protocol used for this pilot is HTTP and the
formatting of the data is structured in JSON.

A series of pilot tests were performed on the follow-
ing dates listed in Table 7.1 over the duration of the
project.

Figure 7.1 Raspberry Pi device for receiving CAN messages
from Wi-Fi.

7.2 At Scale

There are a number of considerations for a scale-out
deployment of a CAN Bus data collection, integration,
and visualization system. As discussed in Section 3.3, a
single vehicle can potentially generate thousands of
messages per second and each use case requires which
of those messages are to be captured by the system.
When this process is scaled out to a fleet level, the
capacity of the agency’s network and servers (whether
they be hosted on premise or in the cloud) to handle the
number of transactions becomes critical.

To reduce data size and load on the system, it is
recommended to save only CAN Bus messages that are
necessary to generate agency performance measures,
such as those defined in Section 2. Once the subset of
messages is determined, the frequency of data capture
and method of transformation and transmission of the
data to the agency is designed so that the system
operates within acceptable threshold for latency given
the network constraints and handles the volume of data
transactions effectively incoming to the agency. The
following subsections describe the methods at the vehi-
cle and system level that can streamline the process, and
potential collaborations with vendors and manufac-
turers that can facilitate deployment of off-the-shelf
products.

7.2.1 In-Vehicle Considerations

To make data collection more scalable, the follow-
ing features can be implemented at the vehicle level
to reduce the size of the data before uploading to the
agency’s servers.

N Save only necessary signals. To cut down the number of

messages collected, save only the signals necessary for

generating metrics.

N Limit how often each signal is sampled. For each signal,

determine the minimum frequency it needs to be saved to

produce metrics. For instance, it may suffice to collect

GPS data every 3 seconds for tactical deployment of

snow plows, but to calculate slipping on the roadway it

Figure 7.2 System architecture for pilot system.

22 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/20



TABLE 7.1
Pilot testing dates

Testing Date Data Elements Tested

February 5, 2018

February 10, 2018

February 11, 2018

February 17, 2018

March 25, 2018

April 8, 2018

May 16, 2018

June 14, 2018

June 17, 2018

January 9, 2019

January 25, 2019

May 1, 2019

Hazard lights, windshield wipers, traction control system, ABS, ambient temperature

Windshield wipers, traction control system, ABS, ambient temperature

Windshield wipers, traction control system, ABS, ambient temperature

Windshield wipers, traction control system, ABS, ambient temperature

Hazard lights, windshield wipers, wheel counters, ABS, ambient temperature, steering angle, brake pressure

Wheel counters

Steering angle

Lateral acceleration, steering angle, wheel counter, RPM

Wheel counter

Defroster, climate control, lighting systems, windshield wiper, brake pressure, accelerometer, traction control

system, ABS, wheel counter, two-/four-wheel drive system

Lateral acceleration

Lateral acceleration, brake pressure
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may be necessary to receive wheel speed signals at 10 to
100 ms if the vehicle is moving at high speed.

N Transform and reduce high-frequency signals into insights.
Some signals need to be transformed before it becomes
meaningful. For instance, a large amount of wheel speed
messages is generated very quickly at 10 to 100 ms but
the majority of the time the data does not provide any-
thing more insightful than vehicle speed. If the practi-
tioners only want to know when a vehicle experienced
slipping, pairs of consecutive wheel speed messages can
be compared at each receive interval and only when a
large sudden increase in speed is detected on one wheel,
the message is then saved. All other messages are dis-
carded to reduce overhead.

N Reduce scalar values into Boolean using thresholds when
feasible. Some events only need a true or false repre-
sentation even though the vehicle may generate a scalar
value. For example, accelerometer messages are typically
represented in meters-per-second-squared and are gener-
ated at high-frequency. However, if only road quality is
of concern, a threshold can be set for the vertical
acceleration component so that when the threshold is
exceeded, a ‘‘true’’ value is saved that would represent a
strong vertical acceleration, as a signature for a potential
pothole or transverse joint.

N Aggregate multiple data elements. Some CAN messages
can be combined to capture a specific type of an event.
Once the event is detected, the underlying CAN messages
can be discarded. For example, to determine hard brak-
ing on the roadway, a combination of high brake pres-
sure, rapid change in speed, and spike in longitudinal
acceleration can be synthesized into a single event.

N Compress the data. Before sending the data over the
network, messages should be compressed to reduce data
size.

N Save data in an efficient format. Some data formats such
as XML carry more overhead than other formats like
JSON, CSV, or binary encoding (Maggiore, 2019).

7.2.2 Network and Server Considerations

Network latency is determined by the type of cellular
connectivity and capacity to process and store data is
dependent on the hardware and software configuration
of agency’s servers, whether it be on premise or hosted

in the cloud. The combination of the two factors
determines how many vehicles can be processed by the
system in real-time.

A previous study has demonstrated 4G-LTE cellular
network speed in a moving vehicle has the capability
to transmit at 10 Mbps (Mosyagin, 2010). While a
seemingly large number of messages can be sent when
the connection is good, this does not consider condi-
tions in rural areas with sparse connectivity. This also
does not consider overhead that is required to negotiate
the transmission of each data packet (Maggiore, 2019).
MQTT services such as Apache Kafka (Apache Soft-
ware Foundation, 2020) and Google Pub/Sub (Google,
2020) make use of efficient protocols to transport data
between devices and server hosts and ensures data
consistency in high-latency environments (Robinson
et al., 2005). These services allow publishers that gene-
rate the data (the vehicles) and subscribers that consume
the data (the servers) to negotiate message delivery with
small overhead and high resilience to dropped connec-
tions, compared to web protocols such as HTTP (flespi,
2018).

For on-premise servers, data storage capacity, and
throughput are important considerations when imple-
menting a real-time data collection and reporting sys-
tem at the agency. The storage capacity of these systems
must meet the demand of the volume of data per unit
time (i.e., data velocity) uploaded from all vehicles. In
addition, database systems rely heavily on the through-
put speed of the storage device; the faster the storage,
the greater number of transactions can be performed to
store CAN messages (Regola, 2012). For hosting in
cloud services, computing and storage resources can be
scaled quickly, but can be costly for moving and storing
large volumes of data to and from the cloud (Tak et al.,
2020).

7.2.3 Leveraging Off-the-Shelf Products

There are many off-the-shelf products that integrate
OBD-II CAN interface with cloud services. Some tele-
communication providers such as Verizon sell packaged



VI connectors and GPS-enabled devices to relay signals
such as location, key on and off, odometer, and basic
diagnostic trouble codes (DTC) for maintenance (Aries,
2020). Figure 7.3a shows an example of a 9-pin J-
connector interface (callout i) that sends CAN informa-
tion to an embedded device (callout ii). Figure 7.3b
shows an example of the interface for tracking one
vehicle on a web dashboard.

Furthermore, select vehicle manufacturers, equip-
ment vendors, and even insurance companies have
developed products to integrate enhanced CAN Bus
messages with the cloud directly (Barabba et al., 2002;
Ford Media Center, 2015; Progressive, n.d.). These
embedded VI devices work with high-frequency CAN
data and transmit messages to a designated service pro-
vider for supported vehicles. Depending on the product,
the CAN data can be decoded for messages pertaining
to the vehicle for certain makes and models. There are
opportunities to leverage these off-the-shelf devices for
retrieving data for quick deployment.

Original equipment vendors such as Nira Dynamics
AB have developed integrated road condition monitor-
ing systems built into production vehicles in collabora-
tion with manufacturers (NIRA Dynamics AB, 2017).
The data is received and processed on board the vehicle
and using the vehicle’s integrated cellular connection
then uploaded to a web platform for real-time road
condition diagnostics. An example of the dashboard is
displayed in Figure 7.4 during a storm around Purdue’s
campus on December 16, 2019.

7.3 Integration into District and Sub-District Activities

After-action reports for the 2018–2019 and 2019–
2020 winter seasons were produced, and a number of
workshops at INDOT districts were conducted over the
course of the project. The below subsections detail
the action-items and activities over the course of the
project.

Figure 7.3 Verizon NetworkFleet system.
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Figure 7.4 Nira dynamics AB road surface information (RSI) tool.

Figure 7.5 After-action report summary for Greenfield and Crawfordsville districts, December 15, 2019.
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7.3.1 After-Action Reports

For each winter storm over the duration of the
project, an after-action report was prepared using the
developed applications and data sources. The reports
contain a traffic speed and weather ‘‘ticker’’ graphic
showing district and state-wide impacts (Figure 7.5),
Doppler radar map, connected vehicle, MARWIS and
AVL data, where available. Table 7.2 shows a summary
of the miles impacted by each storm statewide for the
after-action reports produced.

7.3.2 Workshops

A number of workshops were held during the 2019–
2020 winter season to disseminate information regard-
ing applications that were developed from the research,
and to discuss after-action case studies of recent storms
that have recently occurred at that time around the
engagement. Dates and locations of the engagements
are listed in Table 7.3. Select photos of engagements for
a number of district and subdistrict locations are shown
in Figure 7.6.



TABLE 7.2
Summary of winter impacts by storm

Storm Date Peak Impact (miles below 45 mph)

January 12, 2019

January 19, 2019

January 28, 2019

January 31, 2019

February 10, 2019

February 12, 2019

March 30, 2019

November 11, 2019

November 23, 2019

December 15, 2019

January 17, 2020

February 5, 2020

181

695

171

427

174

141

231

374

85

576

137

251

TABLE 7.3
Engagements with INDOT districts

Location of Workshop Date

West Lafayette Subdistrict

Fort Wayne District

Seymour District

Vincennes District

La Porte District

Greenfield District

October 22, 2019

December 12, 2019

December 17, 2019

January 29, 2019

February 4, 2020

February 20, 2020

Figure 7.6 Select workshops conducted with INDOT districts and subdistricts.
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8. SUMMARY AND RECOMMENDATIONS

Over the course of the project, the research team
engaged a number of industry partners to collaborate,
consult expertise, test equipment, and share findings of
the research with stakeholders. Vehicles from three
different manufacturers were used for testing CAN data
elements in nine categories. A system for receiving,
transmitting and processing the CAN data was piloted
using a vehicle interface (VI) with an embedded com-
puter, cellular networks, and back-office data system at
Purdue University. A series of dashboards for trans-
forming and displaying the data were developed as part
of the user interface deliverables.

A number of workshops engaging INDOT district
and subdistrict personnel were conducted over the course
of the project to share tools, reports, and research deve-
loped from the project. A component of the engagements
included after-action reports that were developed specific
to each district to give an overview of the roadway
performance after each winter storm.

Major recommendations for implementation from
this study include the following:

1. Near-term (6–18 months):

a. Develop relationships with CV data providers to
integrate hard braking events into TMC operations.

b. Develop relationships with CV data providers to
integrate loss of friction data (ABS or traction control)
into TMC operations and coordinate with winter
weather maintenance colleagues.

c. Develop relationships with CV data providers to
identify locations of pavement distress or work zone
irregularities using vehicle pitch, roll, and steering.

2. Medium-term (18 months or longer):

a. Evaluate the feasibility of capturing weather-related
data such as windshield wipers, defroster settings and
temperature readings to enhance TMC and winter
weather management activities.

b. Develop plans to integrate this data into business
processes used by central office, districts, sub-districts
and units. The winter weather data is particularly valu-
able to sub-districts and units.

As vehicles begin to know more about the state of the
infrastructure than agencies, there will be huge benefits
both for transportation agencies and the automotive
industry to partner in developing scalable systems to
make use of the CAN Bus data. By enabling enhanced
real-time road conditions to be available, there will be
tremendous gains in both efficiency and safety. The
recommendations from this report and the lessons
learned from the early use cases will aid Indiana to
become an important stakeholder and help shape this
emerging enhanced road condition monitoring using
CAN Bus data.
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APPENDIX A. LEVERAGING CONNECTED VEHICLES TO PROVIDE ENHANCED 
ROADWAY CONDITION INFORMATION 

Li, H., Wolf, J. C., Mathew, J. K., Navali, N., Zehr, S. D., Hardin, B. L., & Bullock, D. M. 
(2020, August). Leveraging connected vehicles to provide enhanced roadway condition 
information. Journal of Transportation Engineering, Part A: Systems, 146(8). 
https://doi.org/10.1061/JTEPBS.0000370 

Abstract 
Real-time performance measures are important for agencies to maintain their roadways during the 
winter season. Sensing systems such as traffic cameras, weather radar, stationary Road Weather 
Information Systems (RWIS), pavement sensors, mobile weather-sensing units (MARWIS), point 
speed sensors, and third-party speed data have enabled operators to make tactical data-driven 
decisions during inclement weather events. However, infrastructure can be expensive to deploy 
and maintain and may be sparse in rural areas, while speed data alone may not provide enough 
fidelity in borderline conditions. 

This study looks at high-frequency brake pressure, anti-lock brake (ABS) activation, wheel tick, 
traction-control intervention, hazard lights, and windshield wiper data from the in-vehicle bus to 
detect changes in the vehicle and driver behavior during changing winter road conditions. The data 
is reported to the cloud via cellular communication and is viewable in real-time using a map-based 
web dashboard. Three winter weather events are assessed using in-vehicle data collected from 
the February–March 2018 period. MARWIS data and a user-based qualitative rating are also 
used to ground-truth road friction and perceived conditions. Data from hazard lights and wipers 
indicate early perceived weather and traffic hazards, while ABS and traction control only 
indicate severe cases of loss-of-friction.  

Using 2-sample Kolmogorov-Smirnov test, we found high significance in the reductions of applied 
brake pressures and rates of braking in winter versus fair weather conditions before vehicle 
intervention is necessary. As road conditions deteriorate, a driver may reduce braking pressure by 
up to 60% during typical braking operations, while the rate of braking also is reduced by about 
75%. Using the Brown-Forsythe test, the variance of the rate of braking is also found to exhibit 
statistically significant changes as road friction conditions deteriorate. The greatest increase in 
brake rate variance is found to occur within the 20–39 mph range at 110 Bar/sec2 and correlates 
to changes in friction. 

The paper concludes that pairwise comparison of driver brake pressure may be a valuable data 
source indicative of deteriorating road conditions before more severe indicators such as traction 
control, anti-lock brake, and/or hazard indicators are activated. 
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APPENDIX B. USING PROBE DATA ANALYTICS FOR ASSESSING FREEWAY  
SPEED REDUCTIONS DURING RAIN EVENTS  

Downing, W. L., Li, H., Morgan, B., McKee, C., & Bullock, D. M. (2020). Using probe data 
analytics for assessing freeway speed reductions during rain events [Paper presentation]. 
Transportation Research Board 98th Annual Meeting, Washington D.C. 

Abstract 
Rain impacts roadways such as wet pavement, standing water, decreased visibility, and wind gusts 
and can lead to hazardous driving conditions. This study investigates the use of high-fidelity 
Doppler data at 1 km spatial and 2-minute temporal resolution in combination with commercial 
probe speed data on freeways. 

Segment-based space-mean speeds were used and drops in speeds during rainfall events of 5.5 
mm/hour or greater over a one-month period on a section of four to six-lane interstate were 
assessed. Speed reductions were evaluated as a time series over a 1-hour window with the rain 
data. Three interpolation methods for estimating rainfall rates were tested and seven metrics were 
developed for the analysis. The study found sharp drops in speed of more than 40 mph occurred at 
estimated rainfall rates of 30 mm/hour or greater, but the drops did not become more severe beyond 
this threshold. The average time of first detected rainfall to impacting speeds was 17 minutes. 

The bilinear method detected the greatest number of events during the 1-month period, with the 
most conservative rate of predicted rainfall. The range of rainfall intensities were estimated 
between 7.5 to 106 mm/hour for the 39 events. This range was much greater than the heavy rainfall 
categorization at 16 mm/hour in previous studies reported in the literature. The bilinear 
interpolation method for Doppler data is recommended because it detected the greatest number of 
events and had the longest rain duration and lowest estimated maximum rainfall out of three 
methods tested, suggesting the method balanced awareness of the weather conditions around the 
roadway with isolated, localized rain intensities. 
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APPENDIX C. EVALUATION OF THE HIGH-RESOLUTION RAPID REFRESH  
MODEL FOR FORECASTING ROADWAY SURFACE TEMPERATURES   

Downing, W. L., Li, H., Desai, J., Liu, M., Bullock, D. M., & Baldwin, M. E. (2020). Evaluation 
of the high-resolution rapid refresh model for forecasting roadway surface temperatures [Paper 
presentation]. 100th American Meteorological Society Annual Meeting, Boston, MA. 

Abstract 
Pavement surface temperatures are an important component to winter weather operations and are 
an important indicator of whether or not to treat the roadways with brine or chemicals to prevent 
icy conditions. According to FHWA, states and local agencies spend more than $2.3B on winter 
weather operations per year. Having accurate weather forecasts are essential for making the right 
call on a winter storm. This study seeks to test the use of an off-the-shelf weather model, the High-
Resolution Rapid Refresh (HRRR) model to determine pavement surface temperatures compared 
with Road Weather Information System (RWIS.) Six locations are used for ground truth in this 
study. 

Residuals between the RWIS and HRRR are compared at each location in addition to the Mean 
Absolute Error (MAE) for three storms between December 2018 through March 2019. The data 
are filtered using a solar radiation threshold and precipitation for each forecast hour up to 18 hours 
in advance of an event. Forecasts with narrow time windows and with solar radiation above 170 
W/m2 resulted in the highest errors, while forecasts that predicted precipitation result in the lowest 
errors. There is an opportunity to leverage emerging connected vehicle temperature and telematics 
data to ground truth at scale and improve winter forecast predictions in the future. 
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APPENDIX D. DASHBOARDS FOR REAL-TIME MONITORING OF WINTER  
OPERATIONS ACTIVITIES AND AFTER-ACTION ASSESSMENT  

Desai, J., Mathew, J. K., Kim, W., Liu, M., Li, H., Brooks, J. D., & Bullock, D. M. (2019). 
Dashboards for real-time monitoring of winter operations activities and after-action assessment 
[Paper presentation]. Transportation Research Board 99th Annual Meeting, Washington D.C. 
https://doi.org/10.5703/1288284317252 

Abstract 
The Indiana Department of Transportation (INDOT) operates a fleet of nearly 1,100 snowplows 
and spends up to $60M annually on snow removal and de-icing as part of their winter operation 
maintenance activities. Systematically allocating resources and optimizing material application 
rates can potentially save revenue that can be reallocated for other roadway maintenance 
operations. Modern snowplows are beginning to be equipped with a variety of Mobile Road 
Weather Information Sensors (MARWIS) which can provide a host of analytical data 
characterizing on-the-ground conditions during periods of wintry precipitation. Traffic speeds 
fused with road conditions and precipitation data from weather stations provide a uniquely detailed 
look at the progression of a winter event and the performance of the fleet. This research uses a 
combination of traffic speeds, MARWIS and North American Land Data Assimilation System 
(NLDAS) data to develop real-time dashboards characterizing the impact of precipitation and 
pavement surface temperature on mobility. Twenty heavy snow events were identified for the state 
of Indiana from November 2018 through April 2019. Two particular instances, that impacted 182 
miles and 231 miles of interstate at their peaks occurred in January and March, respectively, and 
were used as a case study for this paper. The dashboards proposed in this paper may prove to be 
particularly useful for agencies in tracking fleet activity through a winter storm, helping in resource 
allocation and scheduling and forecasting resource needs. 
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APPENDIX E. USING CROWDSOURCED VEHICLE BRAKING DATA TO IDENTIFY 
ROADWAY HAZARDS 

Li, H., Mathew, J. K., Kim, W., & Bullock, D. M. (2020, October). Using crowdsourced vehicle 
braking data to identify roadway hazards [Paper presentation]. 27th ITS World Congress, Los 
Angeles, CA. 

Abstract 
Modern vehicles know more about the road conditions than transportation agencies. Enhanced 
vehicle data that provides information on “close calls” such as hard braking events or road 
conditions during winter such as wheel slips and traction control will be critical for improving 
safety and traffic operations. This research applied conflict analyses techniques to process 
approximately 1.5 million hard braking events that occurred in the state of Indiana over a period 
of one week in August 2019. The study looked at work zones, signalized intersections, 
interchanges and entry/exit ramps. Qualitative spatial frequency analysis of hard-braking events 
on the interstate demonstrated the ability to quickly identify temporary and long-term construction 
zones that warrant further investigation to improve geometry and advance warning signs. The 
study concludes by recommending the frequency of hard-braking events across different interstate 
routes to identify roadway locations that have abnormally high numbers of “close calls” for further 
engineering assessment. 
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About the Joint Transportation Research Program (JTRP) 
On March 11, 1937, the Indiana Legislature passed an act which authorized the Indiana State 
Highway Commission to cooperate with and assist Purdue University in developing the best 
methods of improving and maintaining the highways of the state and the respective counties 
thereof. That collaborative effort was called the Joint Highway Research Project (JHRP). In 1997 
the collaborative venture was renamed as the Joint Transportation Research Program (JTRP) 
to reflect the state and national efforts to integrate the management and operation of various 
transportation modes. 

The first studies of JHRP were concerned with Test Road No. 1 — evaluation of the weathering 
characteristics of stabilized materials. After World War II, the JHRP program grew substantially 
and was regularly producing technical reports. Over 1,600 technical reports are now available, 
published as part of the JHRP and subsequently JTRP collaborative venture between Purdue 
University and what is now the Indiana Department of Transportation. 

Free online access to all reports is provided through a unique collaboration between JTRP and 
Purdue Libraries. These are available at http://docs.lib.purdue.edu/jtrp. 

Further information about JTRP and its current research program is available at 
http://www.purdue.edu/jtrp. 

About This Report 
An open access version of this publication is available online. See the URL in the citation below. 
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